The Huntington-Hill Method – Version 2

Lecture 25 Section 4.5

Robb T. Koether

Hampden-Sydney College

Wed, Mar 21, 2018

- Version 2
- 2 Examples
- Wersion 1 or Version 2?
- 4 Assignment

Outline

- Version 2
- 2 Examples
- 3 Version 1 or Version 2?
- 4 Assignment

• Initially, every state gets a quota q = 1 (as required by the Constitution).

- Initially, every state gets a quota q = 1 (as required by the Constitution).
- Then divide each state's population p by $D = \sqrt{q(q+1)}$, where q is that state's current quota (initially $D = \sqrt{2}$).

- Initially, every state gets a quota q = 1 (as required by the Constitution).
- Then divide each state's population p by $D = \sqrt{q(q+1)}$, where q is that state's current quota (initially $D = \sqrt{2}$).
- The state with the largest such quotient gets one more seat, so add 1 to its quota q.

- Initially, every state gets a quota q = 1 (as required by the Constitution).
- Then divide each state's population p by $D = \sqrt{q(q+1)}$, where q is that state's current quota (initially $D = \sqrt{2}$).
- The state with the largest such quotient gets one more seat, so add 1 to its quota q.
- Repeat the previous 2 steps until all the seats have been apportioned.

- Initially, every state gets a quota q = 1 (as required by the Constitution).
- Then divide each state's population p by $D = \sqrt{q(q+1)}$, where q is that state's current quota (initially $D = \sqrt{2}$).
- The state with the largest such quotient gets one more seat, so add 1 to its quota q.
- Repeat the previous 2 steps until all the seats have been apportioned.
- Note that on each iteration only the q that was changed and its quotient need to be updated.

Outline

- 1 Version 2
- 2 Examples
- 3 Version 1 or Version 2?
- 4 Assignment

- The populations of three states are 3,7 and 10 million people, respectively.
- The total number of seats apportioned to those states is 7.
- Use Version 2 to determine how many seats each state should get.

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	1	$\sqrt{1\cdot 2}=1.41$	$\frac{7}{\sqrt{2}} = 4.94$
С	10	1	$\sqrt{1\cdot 2}=1.41$	$\frac{10}{\sqrt{2}} = 7.07$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	1	$\sqrt{1\cdot 2}=1.41$	$\frac{7}{\sqrt{2}} = 4.94$
С	10	1	$\sqrt{1\cdot 2}=1.41$	$\frac{10}{\sqrt{2}} = 7.07$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	1	$\sqrt{1\cdot 2}=1.41$	$\frac{7}{\sqrt{2}} = 4.94$
С	10	2	$\sqrt{1\cdot 2}=1.41$	$\frac{10}{\sqrt{2}} = 7.07$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	1	$\sqrt{1\cdot 2}=1.41$	$\frac{7}{\sqrt{2}} = 4.94$
С	10	2	$\sqrt{2\cdot 3}=2.44$	$\frac{10}{\sqrt{6}} = 4.08$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	1	$\sqrt{1\cdot 2}=1.41$	$\frac{7}{\sqrt{2}} = 4.94$
С	10	2	$\sqrt{2\cdot 3}=2.44$	$\frac{10}{\sqrt{6}} = 4.08$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	2	$\sqrt{1\cdot 2}=1.41$	$\frac{7}{\sqrt{2}} = 4.94$
С	10	2	$\sqrt{2\cdot 3}=2.44$	$\frac{10}{\sqrt{6}} = 4.08$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	2	$\sqrt{2\cdot 3}=2.44$	$\frac{7}{\sqrt{6}} = 2.85$
С	10	2	$\sqrt{2\cdot 3}=2.44$	$\frac{10}{\sqrt{6}} = 4.08$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	2	$\sqrt{2\cdot 3}=2.44$	$\frac{7}{\sqrt{6}} = 2.85$
С	10	2	$\sqrt{2\cdot 3}=2.44$	$\frac{10}{\sqrt{6}} = 4.08$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	2	$\sqrt{2\cdot 3}=2.44$	$\frac{7}{\sqrt{6}} = 2.85$
С	10	3	$\sqrt{2\cdot 3}=2.44$	$\frac{10}{\sqrt{6}} = 4.08$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
Α	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	2	$\sqrt{2\cdot 3}=2.44$	$\frac{7}{\sqrt{6}} = 2.85$
С	10	3	$\sqrt{3\cdot 4}=3.46$	$\frac{10}{\sqrt{12}} = 2.88$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
А	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	2	$\sqrt{2\cdot 3}=2.44$	$\frac{7}{\sqrt{6}} = 2.85$
С	10	3	$\sqrt{3\cdot 4}=3.46$	$\frac{10}{\sqrt{12}} = 2.88$

State	Population (p)	Seats (q)	$D=\sqrt{q(q+1)}$	p/D
А	3	1	$\sqrt{1\cdot 2}=1.41$	$\frac{3}{\sqrt{2}} = 2.12$
В	7	2	$\sqrt{2\cdot 3}=2.44$	$\frac{7}{\sqrt{6}} = 2.85$
С	10	4	$\sqrt{3\cdot 4}=3.46$	$\frac{10}{\sqrt{12}} = 2.88$

- The populations of WY, VT, ND, RI, NH, and NE are 564, 626, 673, 1053, 1316, and 1826 thousand people, respectively.
- The total number of seats apportioned to those states is 10.
- Use Version 2 to determine how many seats each state should get.

Outline

- 1 Version 2
- 2 Examples
- Wersion 1 or Version 2?
- Assignment

- Suppose we had 3 states, with populations 2, 5, and 8 million, and 100 seats to apportion.
- Which method would be faster?

- Suppose we had 3 states, with populations 2, 5, and 8 million, and 100 seats to apportion.
- Which method would be faster?
- Why?

- Suppose we had 8 states, with populations 1, 2, 4, 5, 8, 10, 13, and 14 million, and 9 seats to apportion.
- Which method would be faster?

- Suppose we had 8 states, with populations 1, 2, 4, 5, 8, 10, 13, and 14 million, and 9 seats to apportion.
- Which method would be faster?
- Why?

- Suppose we had 8 states, with populations 1, 2, 4, 5, 8, 10, 13, and 14 million, and 9 seats to apportion.
- Which method would be faster?
- Why?
- Work this example with M = 12.

Outline

- 1 Version 2
- 2 Examples
- Wersion 1 or Version 2?
- 4 Assignment

Assignment

Assignment

• Chapter 4 Exercises 49, 50. Use Version 2 with M = 10.